sarkas.tools.observables.StaticStructureFactor
sarkas.tools.observables.StaticStructureFactor#
- class sarkas.tools.observables.StaticStructureFactor[source]#
Static Structure Factors.
The species dependent SSF
is calculated fromwhere the microscopic density of species
with number of particles is given by- Variables
k_list (list) – List of all possible
vectors with their corresponding magnitudes and indexes.k_counts (numpy.ndarray) – Number of occurrences of each
magnitude.ka_values (numpy.ndarray) – Magnitude of each allowed
vector.no_ka_values (int) – Length of
ka_values
array.
Methods
Calculate and save Fourier space data.
Calculate Time dependent Fourier space quantities.
Calculate the observable (and its autocorrelation function).
StaticStructureFactor.from_dict
(input_dict)Update attributes from input dictionary.
Read in particles data
Grab the pandas dataframe from the saved csv file.
Read in the precomputed Fourier space data.
Read in the precomputed time dependent Fourier space data.
StaticStructureFactor.plot
([scaling, acf, ...])Plot the observable by calling the pandas.DataFrame.plot() function and save the figure.
Print static structure factor calculation parameters for help in choice of simulation parameters.
Read the observable's info from the pickle file.
Save the observable's info into a pickle file.
StaticStructureFactor.setup
(params[, phase, ...])Assign attributes from simulation's parameters.
StaticStructureFactor.setup_init
(params[, ...])Assign Observables attributes and copy the simulation's parameters.
Set the attributes postprocessing_dir and dump_dirs_list.
StaticStructureFactor.time_stamp
(message, timing)Print to screen the elapsed time of the calculation.
StaticStructureFactor.update_args
(**kwargs)Update observable specific attributes and call
update_finish()
to save info.Update the
slice_steps
, CCF's and DSF's attributes, and save pickle file with observable's info.