sarkas.tools.observables.DynamicStructureFactor
sarkas.tools.observables.DynamicStructureFactor#
- class sarkas.tools.observables.DynamicStructureFactor[source]#
Dynamic Structure factor.
The species dependent DSF \(S_{AB}(k,\omega)\) is calculated from
\[S_{AB }(k,\omega) = \int_0^\infty dt \, \left \langle | n_{A}( \mathbf k, t)n_{B}( -\mathbf k, t) \right \rangle e^{i \omega t},\]where the microscopic density of species \(A\) with number of particles \(N_{A}\) is given by
\[n_{A}(\mathbf k,t) = \sum^{N_{A}}_{j} e^{-i \mathbf k \cdot \mathbf r_j(t)} .\]Methods
Calculate and save Fourier space data.
Calculate Time dependent Fourier space quantities.
Calculate the observable (and its autocorrelation function).
DynamicStructureFactor.from_dict
(input_dict)Update attributes from input dictionary.
Read in particles data
Grab the pandas dataframe from the saved csv file.
Read in the precomputed Fourier space data.
Read in the precomputed time dependent Fourier space data.
DynamicStructureFactor.plot
([scaling, acf, ...])Plot the observable by calling the pandas.DataFrame.plot() function and save the figure.
Print dynamic structure factor calculation parameters for help in choice of simulation parameters.
Read the observable's info from the pickle file.
Save the observable's info into a pickle file.
DynamicStructureFactor.setup
(params[, ...])Assign attributes from simulation's parameters.
DynamicStructureFactor.setup_init
(params[, ...])Assign Observables attributes and copy the simulation's parameters.
Set the attributes postprocessing_dir and dump_dirs_list.
DynamicStructureFactor.time_stamp
(message, ...)Print to screen the elapsed time of the calculation.
DynamicStructureFactor.update_args
(**kwargs)Update observable specific attributes and call
update_finish()
to save info.Update the
slice_steps
, CCF's and DSF's attributes, and save pickle file with observable's info.