sarkas.potentials.lennardjones#

Module for handling Lennard-Jones interaction.

Potential#

The generalized Lennard-Jones potential is defined as

\[U_{\mu\nu}(r) = k \epsilon_{\mu\nu} \left [ \left ( \frac{\sigma_{\mu\nu}}{r}\right )^m - \left ( \frac{\sigma_{\mu\nu}}{r}\right )^n \right ],\]

where

\[k = \frac{n}{m-n} \left ( \frac{n}{m} \right )^{\frac{m}{n-m}}.\]

In the case of multispecies liquids we use the Lorentz-Berthelot mixing rules

\[\epsilon_{12} = \sqrt{\epsilon_{11} \epsilon_{22}}, \quad \sigma_{12} = \frac{\sigma_{11} + \sigma_{22}}{2}.\]

Force Error#

The force error for the LJ potential is given by

\[\Delta F = \frac{k\epsilon}{ \sqrt{2\pi n}} \left [ \frac{m^2 \sigma^{2m}}{2m - 1} \frac{1}{r_c^{2m -1}} + \frac{n^2 \sigma^{2n}}{2n - 1} \frac{1}{r_c^{2n -1}} \ -\frac{2 m n \sigma^{m + n}}{m + n - 1} \frac{1}{r_c^{m + n -1}} \ \right ]^{1/2}\]

which we approximate with the first term only

\[\Delta F \approx \frac{k\epsilon} {\sqrt{2\pi n} } \left [ \frac{m^2 \sigma^{2m}}{2m - 1} \frac{1}{r_c^{2m -1}} \right ]^{1/2}\]

Potential Attributes#

The elements of the sarkas.potentials.core.Potential.pot_matrix are:

pot_matrix[0] = epsilon_12 * lj_constant
pot_matrix[1] = sigmas
pot_matrix[2] = highest power
pot_matrix[3] = lowest power
pot_matrix[4] = short-range cutoff

Functions

pretty_print_info(potential)

Print potential specific parameters in a user-friendly way.

update_params(potential)

Assign potential dependent simulation's parameters.