sarkas.potentials.moliere
Content
sarkas.potentials.moliere#
Module for handling Moliere Potential.
Potential#
The Moliere Potential is defined as
\[U(r) = \frac{q_i q_j}{4 \pi \epsilon_0} \frac{1}{r} \sum_{\alpha} C_{\alpha} e^{- b_{\alpha} r}.\]
For more details see [Wilson et al., 1977]. Note that the parameters \(b\) are not normalized by the Bohr radius. They should be passed with the correct units [m] if mks or [cm] if cgs.
Force Error#
The force error is calculated from the Yukawa’s formula with the smallest screening length.
\[\Delta F = \frac{q^2}{4 \pi \epsilon_0} \sqrt{2 \pi n b_{\textrm min} }e^{-b_{\textrm min} r_c},\]
This overestimates it, but it doesn’t matter.
Potential Attributes#
The elements of the sarkas.potentials.core.Potential.pot_matrix
are:
pot_matrix[0] = q_iq_je^2/(4 pi eps_0) Force factor between two particles.
pot_matrix[1] = C_1
pot_matrix[2] = C_2
pot_matrix[3] = C_3
pot_matrix[4] = b_1
pot_matrix[5] = b_2
pot_matrix[6] = b_3
Functions
|
Assign potential dependent simulation's parameters. |